

FEATURES

- Low-profile: 6 mm .236 inch in height comforming to EIA standards (Tape height: max. 6.5 mm .256 inch)
- Tape and reel package is available as standard packing style
- Surge withstand between contacts and coil: $2,500 \mathrm{~V}$
- Breakdown voltage between contacts and coil: $1,500 \mathrm{~V}$
- High capacity: 2 A
- High sensitivity:

2 Form C; 140 mW power consumption (Single side stable type)

SPECIFICATIONS

Arrangement			2 Form C
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)			$75 \mathrm{~m} \Omega$
Contact material			Gold-clad silver alloy
Rating	Nominal switching capacity (resistive load)		$\begin{gathered} 2 \mathrm{~A} 30 \mathrm{~V} \text { DC, } \\ 0.5 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \end{gathered}$
	Max. switching power (resistive load)		$60 \mathrm{~W}, 62.5 \mathrm{VA}$
	Max. switching voltage		220 V DC, 125 V AC
	Max. switching current		2 A
	Min. switching capacity 米1		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
Nominal operating power	Single side stable		140 mW (1.5 to 12 V DC) 200 mW (24 V DC) 300 mW (48 V DC)
	1 coil latching		$\begin{gathered} 70 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V} \text { DC) } \\ 100 \mathrm{~mW}(24 \mathrm{~V} \text { DC) } \\ \hline \end{gathered}$
	2 coil latching		$\begin{gathered} 140 \mathrm{~mW}(1.5 \text { to } 12 \mathrm{~V} \mathrm{DC}) \\ 200 \mathrm{~mW}(24 \mathrm{~V} \text { DC) } \end{gathered}$
Expected life (min. operations)	Mechanical (at 180 cpm)		10^{8}
	Electrical (at 20 cpm)	$\begin{aligned} & 2 \text { A } 30 \text { V DC } \\ & \text { resistive } \end{aligned}$	10^{5}
		1 A 30 V DC resistive	2×10^{5}
		0.5 A 125 V AC resistive	10^{5}

Note:

米1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Remarks

* Specifications will vary with foreign standards certification ratings.
*1 Measurement at same location as "Initial breakdown voltage" section.
*2 By resistive method, nominal voltage applied to the coil; contact carrying current: 2 A.
${ }^{*} 3$ Nominal voltage applied to the coil, excluding contact bounce time.
${ }^{*}$ Nominal voltage applied to the coil, excluding contact bounce time without diode.
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 4. Conditions for operation, transport and storage mentioned in Cautions for use (Page 178).

Characteristics

Initial insulation resistance*1			Min. 1,000 M (at 500 V DC)
Initial breakdown voltage	Between open contacts		1,000 Vrms for 1 min . (Detection current: 10 mA)
	Between contact sets		1,500 Vrms for 1 min . (Detection current: 10 mA)
	Between coil	contact and	1,500 Vrms for 1 min . (Detection current: 10 mA)
Initial surge voltage	Between contac (10×160	open μs)	1,500 V (FCC Part 68)
	Betwe coil ($2 \times$	contacts and $0 \mu \mathrm{~s})$	2,500 V (Bellcore)
Temperature rise*2 (at $20^{\circ} \mathrm{C}$)			Max. $50^{\circ} \mathrm{C}$
Operate time [Set time] ${ }^{* 3}$ (at $20^{\circ} \mathrm{C}$)			Max. 4 ms (Approx. 2 ms) [Max. 4 ms (Approx. 2 ms)]
Release time [Reset time]*4 (at $20^{\circ} \mathrm{C}$)			Max. 4 ms (Approx. 1 ms) [Max. 4 ms (Approx. 2 ms)]
Shock resistance		Functional*5	Min. $750 \mathrm{~m} / \mathrm{s}^{2}\{75 \mathrm{G}\}$
		Destructive*6	Min. 1,000 m/s ${ }^{2}$ \{100 G\}
Vibration resistance		Functional*7	$200 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 3.3 mm
		Destructive	$294 \mathrm{~m} / \mathrm{s}^{2}\{30 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temperature	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}^{* 3} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. 2 g .071 oz

ORDERING INFORMATION

*48 V coil type: Single side stable only
Notes: 1. Tape and reel (picked from $1 / 2 / 3 / 4 / 5-$ pin side) is also available by request. Part No. suffix " $-X$ " is needed when ordering. (ex.) TQ2SA-3V-X 2. Tape and reel packing symbol "-Z" or "-X" are not marked on the relay.

Surface-mount terminal variation

Variation	Terminal style	Ambient environment	
		Normal environments (indoor)	Drastic temperature fluctuations (outdoor)
SA type (Standard surface-mount terminal type)		Recommended	-
SL type (Highly connection reliability surface-mount terminal type)		Recommended	Recommended
SS type (Space saving surface-mount terminal type)		Recommended	Recommended

TYPES

1. Single side stable

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Coil resistance, Ω ($\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
TQ2SO-1.5 V	1.5	1.13	0.15	93.8	16	140	2.2
TQ2SO-3 V	3	2.25	0.3	46.7	64.3	140	4.5
TQ2SO-4.5 V	4.5	3.38	0.45	31	145	140	6.7
TQ2SO-5 V	5	3.75	0.5	28.1	178	140	7.5
TQ2SO-6 V	6	4.5	0.6	23.3	257	140	9
TQ2SO-9 V	9	6.75	0.9	15.5	579	140	13.5
TQ2SO-12 V	12	9	1.2	11.7	1,028	140	18
TQ2SO-24 V	24	18	2.4	8.3	2,880	200	36
TQ2SO-48 V	48	36	4.8	6.3	7,680	300	57.6

2. 1 coil latching

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.)	Reset voltage, V DC (max.)	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC
TQ2SO-L-1.5 V	1.5	1.13	1.13	46.9	32	70	2.2
TQ2SO-L-3 V	3	2.25	2.25	23.3	128.6	70	4.5
TQ2SO-L-4.5 V	4.5	3.38	3.38	15.6	289.3	70	6.7
TQ2SO-L-5 V	5	3.75	3.75	14	357	70	7.5
TQ2SO-L-6 V	6	4.5	4.5	11.7	514	70	9
TQ2SO-L-9 V	9	6.75	6.75	7.8	1,157	70	13.5
TQ2SO-L-12 V	12	9	9	5.8	2,057	70	18
TQ2SO-L-24 V	24	18	18	4.2	5,760	100	36

TQ-SMD

3. 2 coil latching

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.)	Reset voltage, V DC (max.)	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC
TQ2SO-L2-1.5 V	1.5	1.13	1.13	93.8	16	140	2.2
TQ2SO-L2-3 V	3	2.25	2.25	46.7	64.3	140	4.5
TQ2SO-L2-4.5 V	4.5	3.38	3.38	31	145	140	6.7
TQ2SO-L2-5 V	5	3.75	3.75	28.1	178	140	7.5
TQ2SO-L2-6 V	6	4.5	4.5	23.3	257	140	9
TQ2SO-L2-9 V	9	6.75	6.75	15.5	579	140	13.5
TQ2SO-L2-12 V	12	9	9	11.7	1,028	140	18
TQ2SO-L2-24 V	24	18	18	8.3	2,880	200	36

O: For each surface-mounted terminal variation, input the following letter.
SA type: \underline{A}, SL type: \underline{L}, SS type: \underline{S}
Notes: 1. Specified value of the pick-up, drop-out, set and reset voltage is with the condition of square wave coil pulse.
2. Standard packing: Tube: 50 pcs.; Case; 1,000 pcs.; Tape and reel: 500 pcs./reel
3. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

DIMENSIONS

SA type

SL type

SS type

General tolerance: $\pm 0.3 \pm .012$

Recommendable mounting pad
(Top view) SA type

mm inch

Schematic (Top view)

-Single side stable (Deenergized condition)

*Orientation stripe located on top of relay.
-1-coil latching (Reset condition)

*Orientation stripe located on top of relay. -2-coil latching (Reset condition)

*Orientation stripe located on top of relay.

Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

1. Maximum switching capacity

2. Life curve

3. Mechanical life (mounting by IRS method) Tested sample:TQ2SA-12V, 10 pcs.

4.-(1) Electrical life (2 A 30 V DC resistive load)

Tested sample:TQ2SA-12V, 6 pcs.
Operating frequency: 20 cpm
Change of pick-up and drop-out voltage (mounting by IRS method)

Change of contact resistance (mounting by IRS method)

7. Distribution of pick-up and drop out voltage Tested sample:TQ2SA-12V, 50 pcs.

Change of contact resistance (mounting by IRS method)

5. Coil temperature rise

Tested sample:TQ2SA-12V, 6 pcs
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

8. Distribution of set and reset voltage Tested sample:TQ2SA-L-12V, 30 pcs.

4.-(2) Electrical life (0.5 A 125 V AC resistive load) Tested sample:TQ2SA-12V, 6 pcs
Operating frequency: 20 cpm
Change of pick-up and drop-out voltage (mounting by IRS method)

6. Operate/release time

Tested sample:TQ2SA-12V, 6 pcs.

9. Ambient temperature characteristics Tested sample:TQ2SA-12V, 5 pcs.

10. Distribution of contact resistance

Tested sample:TQ2SA-5V, 30 pcs. (30×4 contacts)

11.-(1) High-frequency characteristics Isolation characteristics

11.-(2) High-frequency characteristics Insertion loss characteristics

12.-(1) Malfunctional shock (single side stable) Tested sample:TQ2SA-12V, 6 pcs

13.-(1) Influence of adjacent mounting Tested sample:TQ2SA-12V, 5 pcs.

13.-(2) Influence of adjacent mounting Tested sample:TQ2SA-12V, 6 pcs.

13.-(3) Influence of adjacent mounting Tested sample:TQ2SA-12V, 6 pcs.

14. Pulse dialing test

Tested sample:TQ2SA-12V, 6 pcs.
(35 mA 48 V DC wire spring relay load)

Circuit

12.-(2) Malfunctional shock (latching) Tested sample:TQ2SA-L2-12V, 6 pcs.

Change of pick-up and drop-out voltage (mounting by IRS method)

Change of contact resistance (mounting by IRS method)

For Cautions for Use, see Relay Technical Information

